A Classification-based Cocktail-party Processor

نویسندگان

  • Nicoleta Roman
  • DeLiang Wang
  • Guy J. Brown
چکیده

At a cocktail party, a listener can selectively attend to a single voice and filter out other acoustical interferences. How to simulate this perceptual ability remains a great challenge. This paper describes a novel supervised learning approach to speech segregation, in which a target speech signal is separated from interfering sounds using spatial location cues: interaural time differences (ITD) and interaural intensity differences (IID). Motivated by the auditory masking effect, we employ the notion of an ideal time-frequency binary mask, which selects the target if it is stronger than the interference in a local time-frequency unit. Within a narrow frequency band, modifications to the relative strength of the target source with respect to the interference trigger systematic changes for estimated ITD and IID. For a given spatial configuration, this interaction produces characteristic clustering in the binaural feature space. Consequently, we perform pattern classification in order to estimate ideal binary masks. A systematic evaluation in terms of signal-to-noise ratio as well as automatic speech recognition performance shows that the resulting system produces masks very close to ideal binary ones. A quantitative comparison shows that our model yields significant improvement in performance over an existing approach. Furthermore, under certain conditions the model produces large speech intelligibility improvements with normal listeners.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Cocktail - Party Processing

The human auditory system is able to focus on one speech signal and ignore other speech signals in an auditory scene where several conversations are taking place. This ability of the human auditory system is referred to as the “cocktail-party effect”. This property of human hearing is partly made possible by binaural listening. Interaural time differences (ITDs) and interaural level differences...

متن کامل

Spectral Characterization of Generalized Cocktail-Party Graphs

In the paper, we prove that all generalized cocktail-party graphs with order at least 23 are determined by their adjacency spectra.

متن کامل

Cocktail Party Processing via Structured Prediction

While human listeners excel at selectively attending to a conversation in a cocktail party, machine performance is still far inferior by comparison. We show that the cocktail party problem, or the speech separation problem, can be effectively approached via structured prediction. To account for temporal dynamics in speech, we employ conditional random fields (CRFs) to classify speech dominance ...

متن کامل

Cocktail Party Processing

Speech segregation, or the cocktail party problem, has proven to be extremely challenging. This presentation describes a computational auditory scene analysis (CASA) approach to the cocktail party problem. This approach performs auditory segmentation and grouping in a two-dimensional time-frequency representation that encodes proximity in frequency and time, periodicity, amplitude modulation, a...

متن کامل

Deep Transform: Cocktail Party Source Separation via Probabilistic Re-Synthesis

In cocktail party listening scenarios, the human brain is able to separate competing speech signals. However, the signal processing implemented by the brain to perform cocktail party listening is not well understood. Here, we trained two separate convolutive autoencoder deep neural networks (DNN) to separate monaural and binaural mixtures of two concurrent speech streams. We then used these DNN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003